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LETTER TO THE EDITOR 

The massless scalar field around a static black hole 

V P Frolov and A I Zel’nikov 
P N Lebedev Physics Institute, Leninsky Prospect 53, 117924, Moscow, USSR 

Received 6 June 1980 

Abstract. An explicit expression for a massless scalar field of a point charge resting near a 
static black hole is obtained, and the properties of this solution are described. 

There is now a strong belief that the static black hole which appears as a result of 
gravitational collapse can be uniquely specified by its mass and electric charge, while the 
other characteristics fade away during the collapse process. In particular, the static 
black hole cannot possess the massless scalar field ‘hairs’ (Chase 1970). If a body with a 
small scalar charge is dropped into a static black hole and approaches the event horizon, 
then in principle two different outcomes seem plausible: (i) the scalar field increases and 
its stress energy may destroy the event horizon; (ii) the event horizon will not be 
destroyed. To investigate this problem and describe the detailed structure of the scalar 
field, one needs to solve the scalar field equation with a point-like source in a given 
black-hole geometry. As far as we know, the corresponding exact solution has not been 
found. (See however the papers by Chase (1970) and Rowan and Stephenson (1976), 
where the series representation for a solution is given.) 

In the case of the electromagnetic field the exact solution has been found and the 
corresponding field structure investigated in great detail by Copson (1928), Cohen and 
Wald (1971), Hanni and Ruffini (1973), Linet (1976) and Leaute and Linet (1976). In 
this paper we find an explicit solution for a massless scalar field of a point charge which is 
slowly lowered into Schwarzschild and Reissner-Nordstrom black holes. 

We consider the massless scalar field @ obeying the equation 

in a background of the metric 

ds2 = - f ( r )  dt2 +f - ’ ( r )  dr2 + r2(de2 + sin2 8 dq2) .  (2) 
In the particular case of the Reissner-Nordstrom black hole f ( r )  = 1 - 2m/r + e2/r2, 
(G = c = 1). Here p is the density of the scalar field static source. For a point-like scalar 
charge g resting at a point r = b, 8 = 8b,  Q = Q b ,  
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The equation (1) in the metric (2) can be written as 

If we use for a field @ the representation 

cp =E[ W ] ,  

then the function W(r, 8,rp) satisfies the equation 

It can be easily verified that this equation is exactly the same as the equation for an 
electric potential of a static charge distribution i" = (io, 0,  0,  0) ,  io = - a , ( r 2 p ) / r .  In 
particular, the above constructed linear operator fi transforms the static homogeneous 
solution for the electromagnetic potential inio a static homogeneous solution for a 
massless scalar field equation. The operator F evidently possesses an inverse. 

This remarkable property of the scalar field equation allows us to obtain the 
expression for a field @b(r, e, c p )  created by a scalar charge placed at a point r = b, e = ob, 

cp = Q b  in an explicit form, if the corresponding potential vb(r, e, rp) of an electric point 
charge 

8 ( r  - b)8(8  - 8618 (cp - ( P b )  io g 
r'lsin e1 

is known: 

Using the expression for vb(r, 8, rp) in a Reissner-Nordstrom metric obtained by 
Leaute and Linet (1976), 

( r  - m)(b - m) - (m2  - e2)A 
( [ ( r  - m)'+ (b  - m)'- 2(r  - m)(b - m)h - (m2-e2)(1 - A  

A = cos 0 cos o b  +sin t9 sin e b  cos(cp - cpb)  , (8) 
we obtain 

where 
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and 
P = b - m ,  p = r - m ,  p = (m2-e2)'I2 

R = p 2  + P 2  - 2pPA - ~ ~ ( 1 -  A ') . 
It should be noted that the scalar curvature for the Reissner-Nordstrom geometry 
vanishes. Thus in the case under consideration the conformal scalar field equation 
coincides with the equation (1). 

The obtained solution (9) possesses the following properties. If b > 2m then it is 
regular everywhere except the evident pole at the point source. For m + ( m 2  - e2) ' I2  < 
b < 2m an additional pole lying inside the black hole at a point r = 2m -- b, 6 = 7r - Ob, 

cp = (ob + 7r arises. The residue of ( P a  at this pole is (g/47r)(2m - b ) / b .  The field @ b  and 
the invariant IV(PbI2 are finite at the event horizon. The asymptotic behaviour of (Pb at 
large distances ( r  + 03, b is fixed) is 

2 2 112 If the point charge tends to the event horizon b + r+ ,  r+ = m + ( m  - e  ) then the field 
(Pb at a fixed point r tends to zero as ( b  -r+) ' l2 .  The obtained solution (9) allows one to 
write the solution of equation (1) with an arbitrary charge density distribution p ( r )  in 
the form 

@(r, e,p) = I db @ b ( r ,  8, p ) P ( b )  - (11) 

The representation (1 1) shows that the conclusion about the fading away property of 
the scalar field also remains valid when a distributed scalar charge is falling into a black 
hole. 

These results allow us to conclude that when a test scalar charge is slowly lowered 
into a static black hole, the scalar field fades away and the black hole will not be 
destroyed. 
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